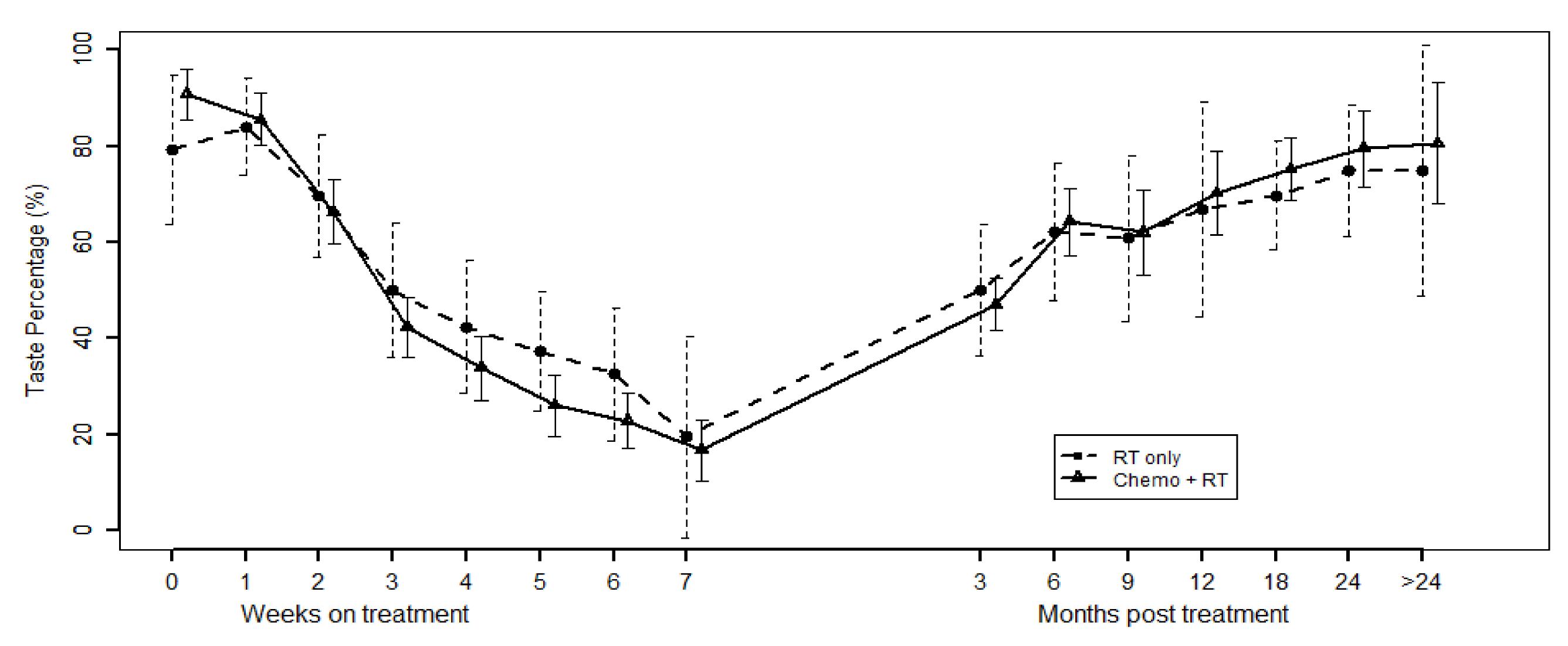

# Decoding Dysgeusia: Taste Dysfunction in Head and Neck Cancer Patients Receiving Radiotherapy

B. R. Page<sup>1</sup>, Z. Cheng<sup>2</sup>, X. C. Zhou<sup>3</sup>, C. Hu<sup>4</sup>, A. Thompson<sup>5</sup>, M. Muse<sup>5</sup>, J. Harkness<sup>5</sup>, A. Choflet<sup>6</sup>, C. Gui<sup>2</sup>, X. Hui<sup>1</sup>, A. P. Kiess<sup>1</sup>, T. R. McNutt<sup>6</sup>, and H. Quon<sup>1</sup>

<sup>1</sup>Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, <sup>2</sup>Johns Hopkins University Division of Biostatistics, Baltimore, MD, <sup>4</sup>Johns Hopkins University School of Medicine, Division of Biostatistics and Bioinformatics, Baltimore, MD, <sup>5</sup>Johns Hopkins University, Baltimore, MD, <sup>6</sup>Johns Hopkins Hopkins Hospital, Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, MD




## Purpose/Objectives

- Taste dysfunction (dysguesia) in patients receiving radiotherapy (RT) leads to decline in numerous quality of life outcomes.
- How to measure this robustly remains a challenge that needs to be addressed to enable effective approaches to prevent or to treat this complication.
- This study seeks to characterize the ability to measure and characterize radiation-induced dysgeusia with a patient reported outcome measure of asking patients to provide a relative percentage of their taste function.

#### Materials/Methods

- Prospectively collected data at the point of care in our institutional *Oncospace* database.
- Clinicians asked patients at each time point, percent of preserved taste function, on a 1-100 scale. Data were collected at baseline, weekly through radiotherapy, and at every three months through 24 months.
- The average assessment of percent taste function at each time point was plotted from baseline to 24 months.
- A multivariate analysis was conducted to assess for patient, tumor, or treatment factors with respect to taste function.
- Included: Nasopharynx, oropharynx, hypopharynx, larynx, oral cavity cancers.
- Exclusion: Thyroid cancer, skin cancer, early stage larynx cancers, salivary cancers, rare sinonasal tumors, lymphomas. Re-RT courses, Those that did not have the PRO data collected at OTV and fu, Patients that did not have both L/R parotid dosimetry/DVH data

#### Results



Taste function recovered at a rate of 0.8 points improvement for every 10 days post RT For every increase in 1 Gy in total dose, the taste function recovered 0.4 points lower Post surgery, patients had TREND in less change in taste function over time Advanced nodal stage: 11 points decline from baseline compared with early N stage

| Variables                         | Univariate           |         | Multivariate     |         | Variables                           | Univariate                |       | Multivariate                 |      |
|-----------------------------------|----------------------|---------|------------------|---------|-------------------------------------|---------------------------|-------|------------------------------|------|
|                                   | Diff95%CI)           | p-value | Diff(95%CI)      | p-value | Dose                                | 0.3 (-0.04, 0.6)          | 0.08  |                              |      |
| N stage:<br>Advanced vs.<br>early | 11.2(0.6, 21.9)      | 0.04    | 7.7(-3.3, 18.7)  | 0.17    | fraction<br>Parotid<br>Dose<br>Mean | 0.008 (0.02, 0.014)       | 0.008 | 0.007<br>(0.0006<br>, 0.013) | 0.03 |
|                                   |                      |         |                  |         | Parotid<br>D05                      | 0.004 (0.0004, .008)      | 0.03  |                              |      |
| Surgery                           | -10.2(-20.9,<br>0.5) | 0.06    |                  |         | parotid<br>D25                      | 0.004<br>(-0.0004, 0.008) | 0.08  |                              |      |
|                                   |                      |         |                  |         | Parotid<br>D50                      | 0.007 (0.002, .013)       | 0.01  |                              |      |
| Chemotherapy                      | 11.8(-0.8,<br>24.3)  | 0.07    |                  |         | Parotid<br>D90                      | 0.01 (0.003, .018)        | 0.005 |                              |      |
| Variables                         |                      | N       | N(%)<br>/Mean(SD |         | T stage                             | is,T0, T1, T2)            | 164   | 89 (54                       | %)   |
| Age                               |                      | 164     | 59.7(10.1)       |         |                                     | Advanced(T3, T4)          |       | 75 (46%)                     |      |
| Gender, male                      |                      | 164     | 129(79%)         |         | N stage                             | N stage 16                |       |                              |      |
| Race                              |                      | 148     |                  |         | Early(N0,N1, N2a,<br>N2NOS)         |                           |       | 74 (45%)                     |      |
| Caucasian                         |                      |         | 105(71%)         |         | Advanc                              | anced(N2b, N3)*           |       | 90 (55%)                     |      |
| African                           |                      |         | 30(20%)          |         | Diagnosis 16                        |                           | 164   |                              |      |
| American<br>Other                 |                      |         | 13(9%)           |         | Nasopharynx                         |                           |       | 7 (4%)                       |      |
| Surgery                           |                      | 164     | 80(49%)          |         |                                     | Orol Covity               |       | 124 (76%)                    |      |
|                                   |                      |         |                  |         | Oral Cavity                         |                           |       | 2 (1%)                       |      |

122 (74%)

Hypopharynx/larynx

31 (19%)

Chemotherapy

Timeframe: 2010-2016

- Included: Nasopharynx, oropharynx, hypopharynx, larynx, oral cavity cancers.
- Treatment: RT alone (>5000 cGy), ChemoRT, PORT
- Total: 164 patients identified with necessary data.

### Conclusions

- 1. The PRO of % Taste Function was a good way of characterizing the trajectory of changes in taste function over the course and recovery of RT.
- 2. Taste function became progressively worse and reached its low point at the end of radiotherapy, slowly increasing to approaching baseline level function after 24 months in all-comers.
- 3. Mean parotid dose, Total Dose, and Advanced Nodal Stage were the only significant findings affecting taste function on MVA.
- 4. Surgical patients had less absolute change in taste function than definitive chemoRT patients
- 5. Next steps include taste function relationship to xerostomia and mucositis and localization of taste function