

Purpose/Objectives

Acute dysphagia is a significant complication for head and neck cancer patients undergoing (chemo)radiotherapy

To determine dosimetric risk factors for patient-reported dysphagia

Materials/Methods

All the data was prospectively collected during routine clinical care and aggregated in Oncospace

Inclusion criteria Head and neck patients Treated with intensitymodulated-radiotherapy from 2015 – 2017 **Exclusion criteria** priori irradiation and surgery to HN region; pre-RT swallow difficulty

Outcome

Sydney Swallow Questionnaire (SSQ): 0-1700, the higher, the worse.

> Worst SSQ during RT

Variables **Baseline characteristics** Age, gender, race, HPV, smoking,tumor staging, tumor location, chemotherapy

Dose **Ipslateral and contralateral** parotid and submandibular glands, superior constrictor muscle, cricopharyngeal muscle

Univariate and stepwise multivariate linear regression to predict acute SSQ

Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland

Table1. Study Subjects Parameters Age, median (range)

RT dose (cGy), median (range) Gender

> male, n(%)female, n (%)

Caucasian, n (%) African American, n (% Asian, n (%) Others, n (%) Smoking status

never smoked, n (%) quit smoking, n (%) currently smoking, n (2

HPV

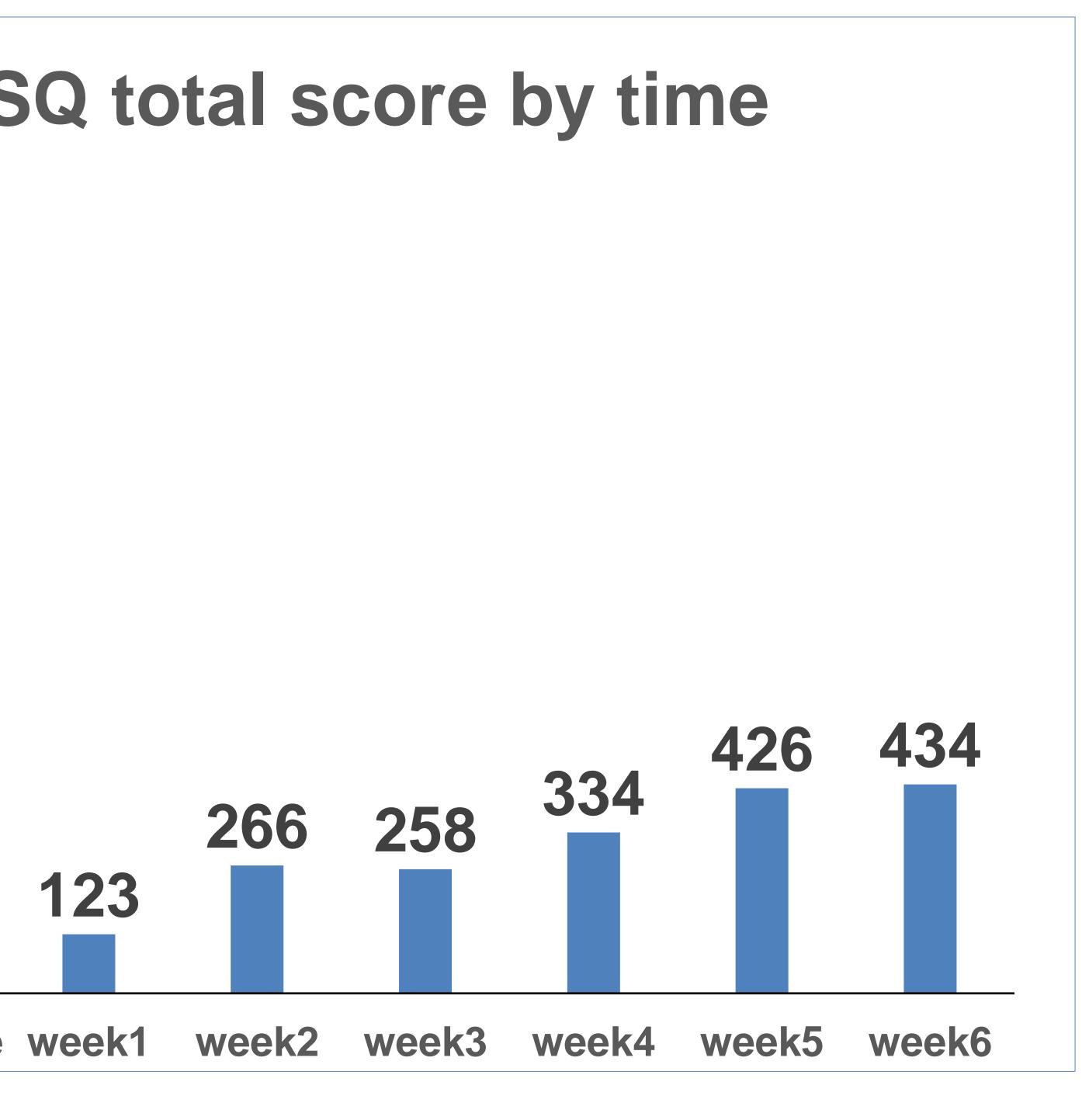
Race

Yes, n (%) No, n (%) **Treatment Modality** RT alone, n (%) ChemoRT, n (%) Tumor site oral cavity, n (%) nasopharynx, n (%) oropharynx, n (%) hypopharynx, n (%) larynx, n (%) others, n (%) T stage < 2, n (%) ≥ 2, n (%) N stage

> < 2, n (%) ≥ 2, n (%)

Table 2. Multivariate linear regression model

Parameters


Contralateral parotid gland D40 Superior constrictor muscle D100

		Re	sults		
	N 58	% 60 (35-86)			SS
			160	0	
e)	58	7000 (4400- 7360)	140	n	
7)					
	50	86.21	120	0	
	8	13.79	100	0	
	44	75.86	80	0	
%)	44 9	15.52			
/0/	1	1.72	60	0	
	4	6.90	40	0	
	<u>ог</u>	40.40	20	0	60
	25 21	43.10 36.21		0	69
(%)	4	6.90		0	baseline
	35 23	60.34			
	23	39.66			
	9	0.00 15.52			
	49	84.48	N	\frown	
					ur pilot
	8	13.79			ontralat
	5	8.62			ay play
	33	56.90		С	RT-rela
	і З	1.72 5.17			
	8	13.79		0	ur findi
				S	SQ ass
	1	2.00		dy	ysphag
	42	98.00		fu	inction,
	15	28.40		p	hysiciar
	13 34	65.52			
				0	ngoing

coefficients	95% CI	p-value
9.64	3.75 – 15.51	< 0.01
13.90	5.87 – 21.91	< 0.01

This work offers the promise of reducing the severity of CRT-related PRO dysphagia

Conclusions

t results suggest that the dose to the teral parotid gland and SC muscle y a role in the development of acute ated PRO dysphagia.

lings underscore the value of OTV sessments and how acute PRO gia may be affected by parotid , which may not be captured by an-graded swallowing function.

Ongoing efforts include the development of a comprehensive atlas of swallow-related structures that can be deformably registered along with continued OTV SSQ evaluations.